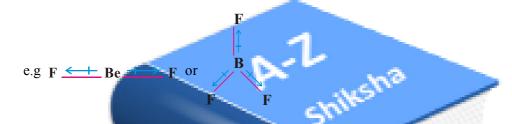
### **UNIT: 4 CHEMICAL BONDING AND MOLECULAR STRUCTURE**

### **Important Points**


In this unit, the study of chemical bonding and formation of molecule from the atoms are included. The smallest particle of element is atom and the smallest particle in a compound is molecule. The force or the binding that keeps the atoms in the molecule combined during the formation of molecule is called chemical bonding. The concepts like that of Kossel-Lewis, VSEPR principle, valence bond theory, molecular orbital theory have been presented. In chemical bonding, it has more relation with orbitals around the nucleus and especially the valence orbitals. We do not think about the nucleus but we take into consideration the effect due to its positive charge. Scientists Lewis and Kossel have mentioned the approach of chemical bonding. In this, the atom obtains the octet either by losing or by gaining the electron, which is chemically inert. This is called law of octet. Such bonds are called ionic bonds e.g. NaCl. Also, some atoms share electrons with each other and obtain octet structure resulting into stable covalent molecule. e.g. Cl<sub>2</sub>. To explain the structures of such molecules he mentioned dot and cross symbols and explained the stability of the molecules. Such a bond is called covalent bond. The approach of Kossel Law is explained in detail in the unit.

When any bond is formed, the distance between their atoms is called bond length and the angle is)child, boomalbitan (te) Asymptotic bond lengths of single (

metrical shapes to molecules viz.  $180^{0}$ - linear,  $109^{0}28^{1}$  alent bond which can be of three types. (1) Polar aged towards the more electronegative atom and  $+\delta$  in electronegative atoms are shown. As a result the ites of the two atoms are same or the difference med by both the atoms sharing the electrons. In cosharing a pair of electrons and the second atom electron pair. viz.  $F_3B \leftarrow NH_3$ . Bond  $\leftarrow$  indicates length, bond angle, bond enthalpy (bond energy) is h, more will be the stability and so more energy will alpy may be different according to bond formation. In we have studied in detail and also the formula to py evolved in formation of compound is the mathons of atoms. It is explained in the unit by discussing

a pair instead of being localised on any molecule it is in the molecule can be shown at different positions a. Such structures are called resonance structures and onance forms is called resonance energy. This can on dioxide, benzene etc. As we have seen earlier, structures like linear, tetrahedral etc, can be obtained on the basis of bond angle. This study can be used to show the shapes of the molecule by hybridisation of atoms in them, geometrical structures etc. viz. linear  $BeCl_2 - 180^0$ , trigonal  $BCl_3 - 120^0$ , tetrahedral  $CH_4 - 109^028'$ .

Lewis approach being insufficient to explain the shapes of molecules, Sidgwick and Powell proposed one principle which is known as VSEPR principle which was developed by Nyholm and Gillespie and they proposed certain assumptions. In this it is important to note that when non-bonding electron pairs are there, then they show deviation in geometrical structure and bond angle due to repulsion between electron pairs. e.g. Molecule of water has sp³ hybridisation and so its bond angle must be  $109^028'$  but it becomes  $104^0$  30' due to repulsion by two non-bonding electron pairs. Hence, it is called distored tetrachedral. The polarity of bond is a vector quantity. Hence, if a polar bond is formed due to difference in electronegativities but another bond of the same type is formed in its opposite direction, then polar bond will be formed but the resultant polarity of the molecules becomes zero and molecule will be non-polar.



The dipole momentes of polar substances can be calculated for which both the charges  $+\delta$  and the distance

the polar bond and only in polar solven in water. Napthalene consideration the lin them: (1) Valence quantum mechanics developed by Paulin

In the assumpt charged nuclei of the Coulomb's Law if a molecule will be for overlaps can be form be shown and then the trons of valence or be with one electron in the geometrical structure. In such valence both

attains axial overlap of internuclear axis. The stability of this bond is more than that of  $\pi$  bond. In the  $\pi$ -bond the axis of the atomic orbitals undergoing overlapping remains parallel to each other and is perpendicular to internuclear axis.  $\pi$ - bonds are less stable in comparison to  $\sigma$ -bonds or they are weaker. Valence bond theory is based on overlapping of valence orbitals. It explains properties like the geometrical shapes, the bond angle etc. very simply but cannot explain magnetic properties.

Scientists Mulliken and Hund suggested molecular orbitals like atomic orbitals and proposed molecular orbital theory. Amongst its important points, the idea that atomic orbitals can also form molecular orbitals was taken into consideration. As many atomic orbitals take part in the formation, same number of molecular orbitals, their energy, symmetry etc. were taken into consideration. The formation of these types of atomic orbitals can be shown in the formation of homonuclear molecules like H<sub>2</sub>, Be<sub>2</sub>, F<sub>2</sub> etc. and heteronuclear molecules like CO, NO etc. Molecular orbitals are formed by linear combination of atomic orbitals—LCAO principle. On the basis of these types of combination two types of molecular orbitals are formed which are known as Bonding Molecular Orbitals (BMO) and Anti-Bonding Molecular Orbitals (ABMO). In the formation of rules these types of BMO and ABMO the principles like Hund's rule of maximum spin, Pauli's exclusion principle, Aufbau principle etc. which are applicable in formation of atomic orbital are also obeyed and maintained. In the unit the molecular orbital diagrams of construction of molecular orbitals from the atomic orbitals for formation of homonuclear molecules from H<sub>2</sub> to Ne<sub>2</sub> elements as well as for formation of heteronuclear molecules like CO, and NO are shown. From these diagrams, important property like bond order can be calculated. Bond order

=  $\frac{1}{2}$  {electron in bonding molecular orbitals – electrons in anti – bonding orbital} viz. for N<sub>2</sub> mol-

ecule bond order  $=\frac{1}{2}(10-4)=3$  i.e. there will be triple bond  $N \equiv N$ . In the same way, in NO

molecule bond order will be  $=\frac{1}{2}[10 \quad 5] = 2.5$ . Here, we will note that if the value of bond order

becomes zero, the bond will not be formed e.g. He<sub>2</sub>. If the value of bond order is integer, the bond will describe (ex) and trained ording to the integer 1, 2, or 3, there will be single (

#### on, then molecule will attain unstable

magnetic properties e.g. In  $O_2$  molecule and in  $N_2$  molecule, all the electrons are y is superior to valence bond theory in

and. The first element of 15, 16, and 17, ments of the group it can form covalent a. Afterwards the molecule like

H — F combines leattle ethato we the hydrogen bond

After knowing about ionic bond, covalent bond, co-ordinate covalent bond, we shall study the special type of bond present in metals which is called metallic bond. As there are 1, 2 or 3 electrons in the outermost orbit of the metals, they are not able to form covalent bonds. Their ionisation energy is less and attraction of electron towards the nucleus is less. One, two or three electrons are arranged around the nucleus of the atom. Hence, the positively charged nucleus or kernel is there. The electrons around it have attraction towards other nuclei of the atoms in the lattice. Thus, the electron instead of being localised for any one atom, remains delocalised in the whole metal crystal. For this theory Electron Sea model was proposed. In this, the atomic kernel is imagined as floating in the sea, delocalised electrons are arranged around kernel possessing positive charge. Because of this type of metallic bonds, the specific properties of metals, like density, duetility, malleability etc. are different.

Co-ordinate covalent bond is a type of covalent bond as seen earlier. The characteristic in it is that from the two atoms undergoing sharing of electrons, only one of the atoms provides a pair of electrons, and is shared by both the atoms. Hence, it is called co-ordinate covalent bond. e.g. In BF<sub>3</sub>, three F atoms were bonded with B-atom through three covalent bonds but the octet of B is not complete. Similary in NH<sub>3</sub> molecule, three H atoms are bonded with N through three covalent bonds. But N has one non-bonding pair of electrons, which it gives to BF<sub>3</sub> molecule and is shared by both the molecules. Hence  $F_3B \leftarrow NH_3$  Co-ordinate covalent bond is formed. In this, the molecule which gives pair of electrons is shown by arrow  $(\rightarrow)$  from the molecule which donates it towards the molecule or atom which accepts and shares gained electron pair. You will study more about co-ordinate covalent bond in the unit of complex salts in Standard-12.

# M.C.Q.

| (1)  | Which of the following    | g is ionic?                 |                                 |                            |
|------|---------------------------|-----------------------------|---------------------------------|----------------------------|
|      | (a) HCl                   | (b) CHCl <sub>3</sub>       | (c) IF <sub>5</sub>             | (d) KI                     |
| (2)  | When molecule is form     | n by chemical bonding b     | etween atoms then               |                            |
|      | (a) nucleous of combin    | ning atoms are participat   | e                               |                            |
|      | (b) valence electrons a   | and inner cell electrons a  | are participate                 |                            |
|      | (c) only valence electron | ons of combining atoms      | are participate                 |                            |
|      | (d) only inner cell elec  | trons of combining aton     | ns are participate              |                            |
| (3)  | Which factor is not res   | ponsible for the formation  | on of ionicbond?                |                            |
|      | (a) crystal lattice energ | y                           | (b) density                     |                            |
|      | (c) ionisation enthalpy   | _                           | (d) electron gain enth          | alpy                       |
| (4)  | According to valence-     | bond theory which mag       | netic property oxygen           | possess?                   |
|      | (a) Paramagnetic          | (b) Ferrimagnetic           | (c) Diamagnetic                 | (d) Anti Ferromagnetic     |
| (5)  | Who was proposed va       | lence-bond theory?          | ch3                             |                            |
|      | (a) Mulliken              | (b) Lenus Pauling           | (c) Hittler and Londa           | n (d) Hund                 |
| (6)  |                           | = $CH_2$ molecule $C^3$ -   | C <sup>2</sup> single bond carb | ons has which type of      |
|      | hybridization?            |                             |                                 |                            |
|      | (a) $sp^2 - sp^3$         | (b) sp - sp <sup>2</sup>    | (c) $sp^3 - sp$                 | (d) sp3 -sp3               |
| (7)  | Which of the following    | g pair of species is isoele |                                 |                            |
|      | (a) $NO_3^-$ , $SO_3$     | 3                           | (c) $CO_3^2$ , $ClO_3$          | (d) $NO_3^-$ , $CO_3^{2-}$ |
| (8)  | Which of the following    | g sentence is incorrect for | or covalent bond?               |                            |
|      | (a) Strenght of covaler   | nt bond depenas upon o      | verlapping at atomic or         | rbitals.                   |
|      | (b) Covalent bond is n    | ot directional.             |                                 |                            |
|      | (c) There is sharing of   | electrons between atom      | s bonded by covalent            | bond                       |
|      | (d) Covalent bond is for  | ormed between atoms h       | aving less difference in        | their electronegativity.   |
| (9)  | Which of the following    | g compound possesses of     | eovalent bond?                  |                            |
|      | (a) MgCl <sub>2</sub>     | (b) NaH                     | (c) BF <sub>3</sub>             | (d) CsCl                   |
| (10) | Which of the following    | g molecule possesses po     | lar and nonpolar coval          | ent bond?                  |
|      | (a) NH <sub>4</sub> Cl    | (b) CCl <sub>4</sub>        | (c) $H_2O_2$                    | (d) HCN                    |
| (11) | Which of the following    | g compound does not po      | ossesses coordinate co          | valent bond?               |
|      | (a) CO                    | (b) SO <sub>2</sub>         | (c) HNO,                        | (d) HNO <sub>3</sub>       |

|      | (a) They do not possesses particular geometical structure |                                         |                         |                        |  |  |
|------|-----------------------------------------------------------|-----------------------------------------|-------------------------|------------------------|--|--|
|      | (b) They may be polar or nonpolar                         |                                         |                         |                        |  |  |
|      | (c) Their boiling and m                                   | elting point is low                     |                         |                        |  |  |
|      | (d) Generally they are                                    | insoluble in water                      |                         |                        |  |  |
| (13) | Which of the following                                    | g possesses ionic and co                | valent bond?            |                        |  |  |
|      | (a) CO <sub>2</sub>                                       | (b) $H_2SO_4$                           | (C) NH <sub>4</sub> Cl  | (D) NaI                |  |  |
| (14) | Whhat is Geometrical                                      | Structure of CIF <sub>3</sub> molecular | ule?                    |                        |  |  |
|      | (a) Triogonal bipyramie                                   | d(b) Corn shpae                         | (c) sea-saw             | (d) T-shape            |  |  |
| (15) | Which of the following                                    | g molecule possesses line               | ear structure?          |                        |  |  |
|      | (a) SO <sub>2</sub>                                       | (b) CO <sub>2</sub>                     | (c) H <sub>2</sub> O    | $(d) C_2 H_4$          |  |  |
| (16) | Correct structure of SI                                   | F <sub>4</sub> is                       |                         |                        |  |  |
|      | <i>p</i> -                                                |                                         |                         |                        |  |  |
|      | (A) (D) F F                                               |                                         | F (D)                   |                        |  |  |
|      | F                                                         | The Francisco                           | FEF                     |                        |  |  |
|      |                                                           |                                         |                         |                        |  |  |
| (17) | Numbers of possible r                                     | esonating structure of ca               | arbonate iong is        |                        |  |  |
|      | (a) 9                                                     | (b) 6                                   | (c) 3                   | (d) 2                  |  |  |
| (18) | Which of the following                                    | molecule has not zero c                 | lipol movement?         |                        |  |  |
|      | (a) NF <sub>3</sub>                                       | (b) BF <sub>3</sub>                     | (c) CO <sub>2</sub>     | (d) BeF <sub>2</sub>   |  |  |
| (19) | Which of the following                                    | molecule possesses hig                  | hest dipolspace moven   | nent?                  |  |  |
|      | (a) CCl <sub>4</sub>                                      | (b) CHCl <sub>3</sub>                   | (c) CHCl <sub>2</sub>   | (d) CH <sub>3</sub> Cl |  |  |
| (20) | Which of the following                                    | molecule possesses dip                  | ol movement?            |                        |  |  |
|      | (a) trans - 1, 2 - dichlo                                 | ro ethene                               | (b) trans pent - 2 - en | ne                     |  |  |
|      | (c) 2, 2- dimethyl prop                                   | pane                                    | (d) 2, 2, 3, 3- tetra m | ethyl butane           |  |  |
| (21) | Which of the following                                    | g molecule has lowest bo                | ond space angle?        |                        |  |  |
|      | (a) NH <sub>3</sub>                                       | (b) SO <sub>2</sub>                     | (c) H <sub>2</sub> O    | $(d) H_2 S$            |  |  |
| (22) | Which orbital has high                                    | est energy?                             |                         |                        |  |  |
|      | (a) $\sigma(2Px)$                                         | (b) <i>π</i> * (2Py)                    | (c) σ(2S)               | (d) $\sigma^*$ (1S)    |  |  |
|      |                                                           |                                         |                         |                        |  |  |

(12) Which of the following characteristic is not for covalent compound?

| (23) | ) Which is the paramagnetic species ?            |                                     |                                      |                                                                         |  |
|------|--------------------------------------------------|-------------------------------------|--------------------------------------|-------------------------------------------------------------------------|--|
|      | (a) $\overline{CN}$                              | (b) $_{\mathrm{O}_{2}}^{-}$         | (c) NO <sup>+</sup>                  | (d) CO                                                                  |  |
| (24) | Which of the following respectively?             | g statement is incorrect            | when $N_2$ and $O_2$ are co          | envert into N <sub>2</sub> <sup>+</sup> and O <sub>2</sub> <sup>+</sup> |  |
|      | (a) In $O_2^+$ , O - O bond                      | order increases.                    | (b) In $N_2^+$ , N - N bo            | nd become weaker.                                                       |  |
|      | (c) N <sub>2</sub> <sup>+</sup> become param     | agnetic                             | (d) Increasing dimagr                | netism in $O_2^+$                                                       |  |
| (25) | According to VSEPR t                             | heory geomety of which              | h block elements can b               | e explain ?                                                             |  |
|      | (a) s                                            | (b) p                               | (c) d                                | (d) f                                                                   |  |
| (26) | Atoms complete octet proposed by which scient    |                                     | during the bond form                 | ation. This postulate was                                               |  |
|      | (a) Powel                                        | (b) Lewis                           | (c) Sigdwick                         | (d) Mulliken                                                            |  |
| (27) | Crystal formation is wh                          | nich type of reaction?              |                                      |                                                                         |  |
|      | (a) endothermic and ex                           | othermic                            | (b) endothermic                      |                                                                         |  |
|      | (c) exothermic                                   | , ,                                 | (d) no heat change of                | ecurs                                                                   |  |
| (28) | Lattice energy of ionic                          | compound depends upo                | on which factor?                     |                                                                         |  |
|      | (a) Size of ion                                  |                                     | (b) Size of ion and ch               | narge                                                                   |  |
|      | (c) charge on ion                                |                                     | (d) Arrangement of ic                | on                                                                      |  |
| (29) | Which is correct order                           | for C - O bond length i             | in $CO$ , $CO_3^{2-}$ , $CO_2$       |                                                                         |  |
|      | (a) $CO_3^{-2} < CO_2 < CO$                      |                                     | (b) $CO_2 < CO_3^{2-} < CO_3^{2-}$   | CO                                                                      |  |
|      | (c) $CO < CO_2 < CO_3^{2-}$                      |                                     | (d) $CO < CO_{3}^{2-} < CO_{3}^{2-}$ | $O_2$                                                                   |  |
| (30) | Maximum how many r                               | numbers of hydrogen bo              | ond can be form by H <sub>2</sub> O  | ) molecule ?                                                            |  |
|      | (a) 2                                            | (b) 4                               | (c) 3                                | (d) 1                                                                   |  |
| (31) | In buta 1, 3 - diene                             |                                     |                                      |                                                                         |  |
|      | (a) only one sp hybridi                          | sed carbon atom                     |                                      |                                                                         |  |
|      | (b) only sp <sup>2</sup> hybridised              | carbon atoms                        |                                      |                                                                         |  |
|      | (c) Two sp <sup>3</sup> and two sp               | <sup>2</sup> hybridised carbon ator | ms                                   |                                                                         |  |
|      | (d) sp, sp <sup>2</sup> and sp <sup>3</sup> hybr | ridized carbon atoms                |                                      |                                                                         |  |
|      |                                                  |                                     |                                      |                                                                         |  |

| (32) | Which of the following statement is irrelevant for sigma bond?                 |                          |                                                |                              |                         |                         |
|------|--------------------------------------------------------------------------------|--------------------------|------------------------------------------------|------------------------------|-------------------------|-------------------------|
|      | (a) strength of sigma bond is not related with overlapping of atomic orbitals. |                          |                                                |                              |                         |                         |
|      | (b) $\sigma$ - bond can form by overlapping of S - P orbitals.                 |                          |                                                |                              |                         |                         |
|      | (c) $\sigma$ - bond ca                                                         | n form by c              | overlapping o                                  | of end of ato                | mic orbitals            | of inner center axis.   |
|      | (d) This type o                                                                | f overlappin             | g is also kno                                  | wn as axial                  | overlaping              |                         |
| (33) | In which molec                                                                 | cule inter mo            | olecular hydr                                  | ogen bond c                  | an be form              | ?                       |
|      | (a) methanol                                                                   | (b)                      | ethelene gly                                   | col (c)                      | p - nitrophe            | enol (d) phenol         |
| (34) | In which molec                                                                 | cule intra mo            | olecular hydr                                  | ogen bond c                  | an be form              | ?                       |
|      | (a) o - nitro pho                                                              | enol (b)                 | aniline                                        | (c)                          | ethylene gly            | col (d) all of these    |
| (35) | Which of the fo                                                                | ollowing pa              | ir possesses                                   | very strong                  | H - bond ?              |                         |
|      | (a) CH <sub>3</sub> COCH                                                       | I <sub>3</sub> and CHC   | $l_3$                                          | (b)                          | HCOOH at                | nd CH <sub>3</sub> COOH |
|      | (c) H <sub>2</sub> O and H                                                     | 2                        |                                                | (d)                          | SiH <sub>4</sub> and Si | Cl <sub>4</sub>         |
| (36) | Which of the fo                                                                | ollowing rela            | ation is corre                                 | ct?                          |                         |                         |
|      | (a) Bond order                                                                 | rα Bond e                | energy α Bo                                    | nd length                    | α stability             |                         |
|      | (b) Bond orde                                                                  | era Bond                 | $\frac{1}{\text{length}} \alpha$               | $\frac{1}{\text{energy}}$ st | ability                 |                         |
|      | (c) Bond orde                                                                  | rα Bond e                | nergy α -<br>F                                 | l<br>Bond length             | $\alpha$ stability      |                         |
|      | (d) Bond orde                                                                  | erα Bond                 | $\frac{1}{\text{length}} \alpha = \frac{1}{1}$ | Bond energy                  | -α stability            |                         |
| (37) | Molecule:                                                                      | $H_2$                    | F <sub>2</sub>                                 | Cl <sub>2</sub>              | $\mathrm{Br}_2$         |                         |
|      | Bondlength:                                                                    | 74pm                     | 144pm                                          | 199pm                        | 228pm                   |                         |
|      | Mention more                                                                   | stable mole              | cule from abo                                  | ove                          |                         |                         |
|      | (a) Cl <sub>2</sub>                                                            | (b)                      | $H_2$                                          | (c)                          | $\operatorname{Br}_2$   | (d) $F_2$               |
| (38) | In water bond                                                                  | angle is 104             | № 30 because                                   |                              |                         |                         |
|      | (a) Oxygen ato                                                                 | m is sp <sup>3</sup> hyb | oridised                                       |                              |                         |                         |
|      | (b) Repulsion b                                                                | oetween lon              | e pair electio                                 | n and bondi                  | ng pair elec            | tron                    |
|      | (c) Oxygen has                                                                 | high electro             | onegetivity.                                   |                              |                         |                         |
|      | (d) H <sub>2</sub> O molec                                                     | ule possess              | es "V" - shaj                                  | pe.                          |                         |                         |
|      |                                                                                |                          |                                                |                              |                         |                         |

| (39) | (39) In which of the following strong H-bond is present?                                  |                                        |                                                               |                                     |
|------|-------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------|-------------------------------------|
|      | (a) F - HF                                                                                | (b) O - HN                             | (c) O - HO                                                    | (d) O - HF                          |
| (40) | Which is correct orde                                                                     | er for bond dissociation               | energy in $O_2$ , $O_2^+$ , $O_2^-$                           | $\frac{1}{2}$ and $O_2^{2-}$        |
|      | (a) $O_2 > O_2^+ > O_2^{2-} >$                                                            | $\mathrm{O}_2^-$                       | (b) $O_2^+ > O_2^- > O_2^-$                                   | > O <sub>2</sub> <sup>2-</sup>      |
|      | (c) $O_2^- > O_2^{2-} > O_2^+ >$                                                          | $\mathrm{O}_2$                         | (d) $O_2^- > O_2^{2-} > O_2$                                  | > O <sub>2</sub> <sup>+</sup>       |
| (41) | O, P, Q, R elements e                                                                     | lectronic configuration is             | s given below                                                 |                                     |
|      | $O = 1s^2$                                                                                | $P = 1s^2, 2s^2, 2p^2$                 |                                                               |                                     |
|      | $Q = 1s^2, 2s^2, 2p^5$                                                                    | $R = 1s^2, 2s^2, 2p^6$                 |                                                               |                                     |
|      | Which atom has stron                                                                      | ng behaviour of electrova              | alent bond ?                                                  |                                     |
|      | (a) O                                                                                     | (b) P                                  | (c) Q                                                         | (d) R                               |
| (42) | In which molecule bo                                                                      | ond distorsion is more ac              | cording to VSEPR the                                          | eory?                               |
|      | (a) SO <sub>2</sub>                                                                       | (b) NH <sub>3</sub>                    | (c) O <sub>3</sub>                                            | (d) H <sub>2</sub> O                |
| (43) | Which of the following                                                                    | ng species is more stable              | ? <b>K</b> ST                                                 |                                     |
|      | (a) O <sub>2</sub>                                                                        | (b) Ne <sub>2</sub> <sup>+</sup>       | (c) O <sub>2</sub>                                            | (d) F <sub>2</sub>                  |
| (44) | Number of nonbondi                                                                        | ng electron pair in XeF <sub>6</sub> , | , XeF <sub>4</sub> and XeF <sub>2</sub> respe                 | ectively                            |
|      | (a) 2, 3, 1                                                                               | (b) 1, 3, 2                            | (c) 3, 2, 1                                                   | (d) 1, 2, 3                         |
| (45) | On keeping two cube                                                                       | of ice on each other wh                | ich become one cube                                           | which factor is responsible         |
|      | for it?                                                                                   |                                        |                                                               |                                     |
|      | (a) Van-der waals attr                                                                    | raction (b) Hydrogen l                 | bond (c) Dipole attra                                         | action (d) Covalent bond            |
| (46) | Determine lattice ener                                                                    | rgy of LiF <sub>(S)</sub> according to | given data.                                                   |                                     |
|      | $(i) \operatorname{Li}_{(S)} \to \operatorname{Li}_{(g)}$                                 |                                        | 155.2 KJ mol $^{-1}$ ( $\Delta_{ m S}$                        | H)                                  |
|      | (ii) $F_{2(g)} \rightarrow 2F_{(g)}$                                                      |                                        | 75.2 KJ $\Delta \left( \frac{\text{H}_{\text{D}}}{2} \right)$ |                                     |
|      | (iii) $\operatorname{Li}_{(g)} \to \operatorname{Li}_{(g)}^+ + \overset{-}{e}$            |                                        | 520.0 KJ molΔ <sup>1</sup> H(                                 | i )                                 |
|      | (iv) $F_{(g)}^{+\bar{e}} \rightarrow \overline{F}_{(g)}$                                  |                                        | $-33.0~{ m KJ}\Delta(~{ m Hg}~)$                              |                                     |
|      | (v) $\operatorname{Li}_{(s)} + \frac{1}{2} \operatorname{F}_{2(g)} \to \operatorname{Li}$ | $iF_{(S)}$                             | -504.1 KJ mol ⋅ (∠                                            | <b>,</b> H)                         |
|      | (a) $-86.7  \text{KJ}  \text{mol}^{-1}$                                                   | (b) 86.7 <i>KJ mol</i> <sup>-1</sup>   | (c) $-867$ KJ mol $^{-1}$                                     | (d) 867 <i>KJ mol</i> <sup>-1</sup> |

| (47) | Which of the following statment is incorrect for metallic bond?         |                              |                                                 |                                 |  |
|------|-------------------------------------------------------------------------|------------------------------|-------------------------------------------------|---------------------------------|--|
|      | (a) There is attraction between delocalised electrons and atomic karnel |                              |                                                 |                                 |  |
|      | (b) Directionl property                                                 | is shown by metal            |                                                 |                                 |  |
|      | (c) Delocalised electron                                                | n can change their positi    | on easily in crystal                            |                                 |  |
|      | (d) Explanation of met                                                  | callic bond can be given     | by 'electron sea model                          | S - Orbital                     |  |
| (48) | Why lattice energy of                                                   | NaCl > KBr ?                 |                                                 |                                 |  |
|      | (a) When size of negat                                                  | ive ion decrease in ionic    | crystal then lattice end                        | ergy increases.                 |  |
|      | (b) When volume of p more and hence latice                              | _                            | is small than then inte                         | erionic attraction become       |  |
|      | (c) In ionic crystal whe                                                | en size of positive ion de   | ecrease, then lattice ene                       | ergy increases.                 |  |
|      | (d) All of given                                                        |                              |                                                 |                                 |  |
| (49) | Number of H - bond for                                                  | orm by unpaired electro      | ns of liquid NH <sub>3</sub> , H <sub>2</sub> O | and HF respectively are         |  |
|      | (a) 3, 4, 2                                                             | (b) 4, 4, 2                  | (c) 3, 2, 1                                     | (d) 1, 2, 1                     |  |
| (50) | Which of the following                                                  | g pair is not in order for   | boiling point for 14, 1:                        | 5, 16 and 17 group?             |  |
|      | (a) $H_2O > H_2S$                                                       | (b) HF > HCl                 | (c) $CH_4 > SiH_4$                              | (d) $NH_3 > PH_3$               |  |
| (51) | Which of the following                                                  | g compound possesses ic      | onic bond?                                      |                                 |  |
|      | (a) CH <sub>4</sub>                                                     | (b) SiCl <sub>4</sub>        | (c) BF <sub>3</sub>                             | (d) MgCl <sub>2</sub>           |  |
| (52) | Which of the following diatomic malecule or io                          |                              | and ABMO electrons                              | is correct for stability of     |  |
|      | (a) $N_a > N_b$                                                         | (b) $N_b > N_a$              | (c) $N_a + N_b = 0$                             | $(d) N_a = N_b$                 |  |
| (53) | At what distance van-                                                   | derwaals attraction exist    | ?                                               |                                 |  |
|      | (a) $4.5 \times 10^{-10}$ m                                             | (b) 0.45nm                   | (c) 4.5 A°                                      | (d) Given all                   |  |
| (54) | What is bond energy o                                                   | of H-bond ?                  |                                                 |                                 |  |
|      | (a) 40 J mol <sup>-1</sup>                                              | (b) 40 KgJ mol <sup>-1</sup> | (c) 40 cal. mol <sup>-1</sup>                   | (d) 40 Kg cal mol <sup>-1</sup> |  |
| (55) | In which molecule inte                                                  | r molecular H-bond is p      | ossible?                                        |                                 |  |
|      | (a) CH <sub>3</sub> COCH <sub>3</sub>                                   | (b) CH <sub>4</sub>          | (c) SiH <sub>4</sub>                            | (d) NH <sub>3</sub>             |  |
| (56) | Which of the following                                                  | g characterstic does not p   | possesses by metal?                             |                                 |  |
|      | (a) luminus                                                             |                              |                                                 | (b) ductility                   |  |
|      | (c) increase in conduct                                                 | ance by increase in temp     | perature                                        | (d) malleability                |  |
|      |                                                                         |                              |                                                 |                                 |  |

| (57) | 7) On which factor conductance of metals responsible? |                                              |                                   |                              |  |
|------|-------------------------------------------------------|----------------------------------------------|-----------------------------------|------------------------------|--|
|      | (a) ions                                              | (b) delocalised                              | (c) atomic kernel                 | (d) number of atoms          |  |
| (58) | Which of the following                                | g figure shows electron-s                    | sea model?                        |                              |  |
|      |                                                       |                                              |                                   |                              |  |
|      | A) 000<br>000<br>000                                  | (B) (B-(B)-(B-(B)-(B)-(B)-(B)-(B)-(B)-(B)-(B |                                   |                              |  |
| (59) | According to which go living organism?                | roup, hydrogen bond is                       | form in protein molec             | ule present in musecls of    |  |
|      | (a) -CO-                                              | (b) -COOR                                    | (c) -CONH-                        | (d) -COOH                    |  |
| (60) | On which factor van-c                                 | der waalls attraction force                  | ce does not depend?               |                              |  |
|      | (a) numbers of molecu                                 | les                                          | (b) contact surface an            | rea of molecules             |  |
|      | (c) shape of molecules                                | (d) numbers of electron                      | n in molecules                    |                              |  |
| (61) | Practicol dipal movembe the percentage of ic          |                                              | bond length of HCl is             | s 1.275 A° than what will    |  |
|      | (a) 7                                                 | (b) 17                                       | (c) 43                            | (d) 21                       |  |
| (62) | Which sentence is cor                                 | reet with respect to bone                    | d enthalpy ?                      |                              |  |
|      | (a) As bond order is m                                | nore, then bond dissociat                    | tion enthalpy is less             |                              |  |
|      | (b) As atomic volume                                  | is more, then bond energ                     | gy is more.                       |                              |  |
|      | (c) As bond enthalpy i                                | s more, then stability of                    | molecule or ion is less.          |                              |  |
|      | (d) As number of nonl                                 | oonding election pair on                     | bonded atom then bon              | nd enthalpy is less.         |  |
| (63) | which of the following                                | orbitals form bonding o                      | orbital?                          |                              |  |
|      | (a) + + S - Orbital P - Orbital                       | (b) P - Orbital a/f - Orbital                | (c) + + + P - Orbital P - Orbital | (d) + - Orbital P - Orbital  |  |
| (64) | Mention number of be                                  | onding electron pairs and                    | d nonbonding electron             | pairs in NO <sub>3</sub> ion |  |
|      | (a) 3, 1                                              | (b) 2, 2                                     | (c) 4, 0                          | (d) 1, 3                     |  |
| (65) | How many numbers o                                    | f bonding and nonbond                        | ing electron pairs in CC          | O <sub>2</sub> ?             |  |
|      | (a) 4, 4                                              | (b) 2, 4                                     | (c) 4, 2                          | (d) 2, 2                     |  |

| (66) | Mention proper order                          | of bond length given be             | elow.                                   |                                           |
|------|-----------------------------------------------|-------------------------------------|-----------------------------------------|-------------------------------------------|
|      | (a) $N_2 < N_2^{2-} < N_2^{-}$                | (b) $N_2^{2-} < N_2^- < N_2$        | (c) $N_2^- < N_2 < N_2^{2-}$            | (d) $N_2 < N_2^{2-} < N_2$                |
| (67) | Show paramagnetic co                          | ompound given below.                |                                         |                                           |
|      | (a) O <sub>3</sub>                            | (b) KO <sub>2</sub>                 | (c) N <sub>2</sub> O                    | (d) $Na_2O_2$                             |
| (68) | Which species posses                          | ses pyramidal shape?                |                                         |                                           |
|      | (a) OsF <sub>2</sub>                          | (b) SO <sub>3</sub>                 | (c) BrF <sub>3</sub>                    | (d) $SiO_3^{2-}$                          |
| (69) | Which of the following                        | ng does not possesses bo            | ond order as CO?                        |                                           |
|      | (a) NO                                        | (b) NO                              | (c) N <sub>2</sub>                      | (d) $\bar{CN}$                            |
| (70) | Which rule is violated                        | l in the given electronic o         | configuration?                          |                                           |
|      |                                               |                                     |                                         |                                           |
|      | ı                                             |                                     |                                         |                                           |
|      |                                               | /()                                 |                                         |                                           |
|      |                                               |                                     |                                         |                                           |
|      | 2P                                            | $\mathbb{Q}^{-}\mathbb{Q}^{\prime}$ | 2P                                      |                                           |
|      |                                               |                                     | hill                                    |                                           |
|      | (a) Authou                                    | (b) Pauli                           | (a) Hand                                | (d) Cirron all                            |
| (71) | (a) Aufbau                                    | (b) Pauli                           | (c) Hund                                | (d) Given all                             |
| (71) |                                               | ving molecule double bo             | 000000000000000000000000000000000000000 |                                           |
|      | (a) S <sub>2</sub>                            | (b) O <sub>2</sub>                  | (c) C <sub>2</sub>                      | (d) H2C = CH2                             |
| (72) | Mention AB <sub>4</sub> F <sub>2</sub> type m | nolecule.                           |                                         |                                           |
|      | (a) BrF <sub>5</sub>                          | (b) XeF <sub>4</sub>                | (c) $SF_6$                              | (d) XeOF <sub>4</sub>                     |
| (73) | Which of the followin                         | g is the correct order for          | r lone pair and bonding                 | g pair electrons?                         |
|      | Lp = Lone pair and B                          | p = Bonding pair                    |                                         |                                           |
|      | (a) Lp - Lp > Lp - Bp                         | p > Bp - Bp                         | (b) $Lp - Bp > Lp - I$                  | $\mathbb{L}p > \mathrm{Bp} - \mathrm{Bp}$ |
|      | (c) $Bp - Bp > Lp - Lp$                       | p > Lp - Bp                         | (d) $Lp - Lp > Bp - B$                  | Bp > Lp - Bp                              |
| (74) | Which theory is usefu                         | l to determine geometric            | al structure of molecul                 | es?                                       |
|      | (a) molecular orbital th                      | heory                               | (b) VSEPR theory                        |                                           |
|      | (c) Resonance theory                          | (d) Quantam mechani                 | cs                                      |                                           |
| (75) | The one outermost ek                          | ectron present in Na eler           | ment at                                 |                                           |

(a) one comer of simple cube

(c) center of simple cube

(b) eight corner of simple cube

(d) each corner of simple cube

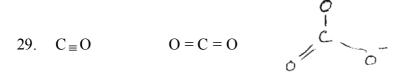
| (76) | 6) In which molecules / ion have not all the equal bonds?                                         |                                                         |                                   |                      |  |
|------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------|----------------------|--|
|      | (a) SF <sub>4</sub>                                                                               | (b) BF <sub>4</sub>                                     | (c) XeF <sub>4</sub>              | (d) SiF <sub>4</sub> |  |
| (77) | Which of the following                                                                            | has maximum bond ang                                    | gle ?                             |                      |  |
|      | (a) NH <sub>3</sub>                                                                               | (b) CH <sub>4</sub>                                     | (c) CO <sub>2</sub>               | (d) $H_2O$           |  |
| (78) | Which of the following                                                                            | g have equal bond order                                 | ?                                 |                      |  |
|      | (a) $O_2^-$                                                                                       | (b) CN-                                                 | (c) NO                            | (d) B and C          |  |
| (79) | The type of bond pres                                                                             | ent in CuSO <sub>4</sub> .5H <sub>2</sub> O             |                                   |                      |  |
|      | (a) covalent and co-ord                                                                           | dinate covalent                                         | (b) electrovalent and             | covalent             |  |
|      | (c) electrovalent and co-ordinate covalent                                                        |                                                         |                                   |                      |  |
|      | (d) electrovalent, covalent and co-ordinate covalent                                              |                                                         |                                   |                      |  |
| (80) | 0) Which of the following statement is wrong                                                      |                                                         |                                   |                      |  |
|      | (a) sp² hybrid orbitals are formed from two p - atomic and one s - orbitals                       |                                                         |                                   |                      |  |
|      | (b) hybridization is the mixing of atomic orbitals prior to their combing into molecular orbitals |                                                         |                                   |                      |  |
|      | (c) d <sup>2</sup> p <sup>2</sup> hybrid orbitals are all at go to one an other                   |                                                         |                                   |                      |  |
|      | (d) d <sup>2</sup> sp <sup>3</sup> hybrid orbital                                                 | s are directed towords t                                | the corners of a regula           | tetrahedron          |  |
| (81) | CO <sub>2</sub> is isostructual with                                                              | , ,                                                     |                                   |                      |  |
|      | (a) SnCl <sub>2</sub>                                                                             | (b) HgCl <sub>2</sub>                                   | (c) C <sub>2</sub> H <sub>2</sub> | (d) SO <sub>2</sub>  |  |
| (82) | NH <sub>3</sub> has a higher boiling                                                              | g point than expected b                                 | ecause                            |                      |  |
|      | (a) its density decrease                                                                          | s on freezing                                           |                                   |                      |  |
|      | (b) with water it forms                                                                           | NH <sub>4</sub> OH                                      |                                   |                      |  |
|      | (c) it has strong inter m                                                                         | nolecular covalent bond                                 | s ?                               |                      |  |
|      | (d) it has intermolecula                                                                          | r hydrogen bonds.                                       |                                   |                      |  |
| (83) | The molecule with zero                                                                            | dipole moment is                                        |                                   |                      |  |
|      | (a) chloroform                                                                                    |                                                         | (b) methyl chloride               |                      |  |
|      | (c) carbon tetrachlorid                                                                           | e                                                       | (d) methylene chlorid             | e                    |  |
| (84) | Molecular shaper of S                                                                             | F <sub>4</sub> , CF <sub>4</sub> , XeF <sub>4</sub> are |                                   |                      |  |
|      | (a) the same with 1, 1 a                                                                          | and 1 lone pairs of elect                               | crons respectively                |                      |  |
|      | (b) different with 1, 0 a                                                                         | and 2 lone pairs of electronic                          | rons respectively                 |                      |  |
|      | (c) different with 0, 1                                                                           | and 2 lone pairs of elect                               | trons respectively                |                      |  |
|      | (d) different with 2, 0 a                                                                         | and 1 lone pairs of elect                               | rons respectively                 |                      |  |

| (85) | ) Which of the following has the regular tetrahedral structure?  |                                     |                                                                                                          |                                        |  |  |
|------|------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------|--|--|
|      | (a) SF <sub>4</sub>                                              | (b) $[Ni(CN)_4]^{2-}$               | (c) BF <sub>4</sub>                                                                                      | (d) XeF <sub>4</sub>                   |  |  |
| (86) | In OF <sub>2</sub> , number of bon                               | d pairs and lone pairs of           | f electrons are respecti                                                                                 | vely                                   |  |  |
|      | (a) 2, 8                                                         | (b) 2, 6                            | (c) 2, 9                                                                                                 | (d) 2, 10                              |  |  |
| (87) | In $O_2^-$ , $O_2$ , $O_2^{2-}$ molecular                        | ular species the total nur          | nber of antibonding el                                                                                   | ectrons respectively are               |  |  |
|      | (a) 7, 6, 8                                                      | (b) 1, 0, 2                         | (c) 6, 6, 6                                                                                              | (d) 8, 6, 8                            |  |  |
| (88) | Match the following an                                           | nd choose the correct An            | iswer                                                                                                    |                                        |  |  |
|      | Column - I                                                       | Column -II                          |                                                                                                          |                                        |  |  |
|      | (i) $sp^3 d^2$                                                   | (a) $Ni[(CN)_4]^{2-}$               |                                                                                                          |                                        |  |  |
|      | (ii) sp <sup>3</sup> d                                           | (b) SnCl <sub>2</sub>               |                                                                                                          |                                        |  |  |
|      | (iii) dsp <sup>2</sup>                                           | (c) IC $\bar{l_4}$                  |                                                                                                          |                                        |  |  |
|      | (iv) sp <sup>2</sup>                                             | (d) TeCl <sub>4</sub>               |                                                                                                          |                                        |  |  |
|      | (a) $i \rightarrow d$ , $ii \rightarrow a$ , $iii -$             | $\rightarrow$ c, iv $\rightarrow$ b | (b) $i \rightarrow c$ , $ii \rightarrow d$ , $iii$                                                       | $i \rightarrow a$ , $iv \rightarrow d$ |  |  |
|      | (c) $i \rightarrow b$ , $ii \rightarrow c$ , $iii \rightarrow c$ | $\rightarrow$ d, iv $\rightarrow$ a | (b) $i \rightarrow c$ , $ii \rightarrow d$ , $iii$<br>(d) $i \rightarrow a$ , $ii \rightarrow b$ , $iii$ | $\rightarrow$ c, iv $\rightarrow$ d    |  |  |
| (89) | Among the following hyridisation is                              | compounds, the one the              | hat is polar and has tl                                                                                  | ne central atom with sp <sup>2</sup>   |  |  |
|      | (a) HClO <sub>2</sub>                                            | (b) BF <sub>3</sub>                 | (c) H <sub>2</sub> CO <sub>3</sub>                                                                       | (d) SiF <sub>4</sub>                   |  |  |
| (90) | Match the following                                              |                                     |                                                                                                          |                                        |  |  |
|      | Set A                                                            |                                     | Set B                                                                                                    |                                        |  |  |
|      | (1) stability of bond                                            |                                     | (p) Bond energy                                                                                          |                                        |  |  |
|      | (2) Molecular orbital th                                         | neory                               | (q) Bond order                                                                                           |                                        |  |  |
|      | (3) octet rule                                                   |                                     | (r) Variable Valency                                                                                     |                                        |  |  |
|      | (4) Valence bond theor                                           | У                                   | (s) Electronic concep                                                                                    | t of valency                           |  |  |
|      | (a) $1 \rightarrow q$ , $2 \rightarrow p$ , $r$ ,                | $3 \rightarrow p, 4 \rightarrow s$  | (b) $1 \rightarrow p, q, 2 \rightarrow p$                                                                | $p, 3 \to r, 4 \to s$                  |  |  |
|      | (c) $1 \rightarrow p, q, 2 \rightarrow r,$                       | $3 \rightarrow s, 4 \rightarrow r$  | (d) $1 \rightarrow p, q, 2 \rightarrow q$                                                                | $q, 3 \rightarrow s, 4 \rightarrow r$  |  |  |
| (91) | Bond strength increase                                           | s with                              |                                                                                                          |                                        |  |  |
|      | (a) Bond length increas                                          | sing                                |                                                                                                          |                                        |  |  |
|      | (b) Antibonding eletron                                          | s being higher in numbe             | r                                                                                                        |                                        |  |  |
|      | (c) Bond order increas                                           | ing                                 | (d) Bond angle increa                                                                                    | asing                                  |  |  |
|      |                                                                  |                                     |                                                                                                          |                                        |  |  |

| (92)  | $O_2^{2+}$ will have                        |                                   |                               |                                       |  |  |
|-------|---------------------------------------------|-----------------------------------|-------------------------------|---------------------------------------|--|--|
|       | (a) Bond order lower than O                 | 2                                 |                               |                                       |  |  |
|       | (b) Bond order higher than $O_2$            |                                   |                               |                                       |  |  |
|       | (c) Bond order lower t                      | han H <sub>2</sub>                |                               |                                       |  |  |
|       | (d) Bond order higher                       | than N <sub>2</sub>               |                               |                                       |  |  |
| (93)  | In a molecule number                        | of electrons in BMO are           | e more as compared to         | ABMO, hence                           |  |  |
|       | (a) a bond will be form                     | ed                                |                               |                                       |  |  |
|       | (b) no bond will be for                     | med                               |                               |                                       |  |  |
|       | (c) information is not su                   | ufficient                         |                               |                                       |  |  |
|       | (d) none of the above                       |                                   |                               |                                       |  |  |
| (94)  | The bond angle in the a                     | mmonium ion is equal t            | o                             |                                       |  |  |
|       | (a) 90°                                     | (b) 104°                          | (c) 120°                      | (d) 109°.281                          |  |  |
| (95)  | The correct order of di                     | pole moment is                    |                               |                                       |  |  |
|       | (a) $CH_4 < NF_3 < NH_3$                    | < H <sub>2</sub> O                | (b) $NF_3 < CH_4 < NH$        | $_{3}$ $<$ $\mathrm{H}_{2}\mathrm{O}$ |  |  |
|       | (c) $NH_3 < NF_3 < CH_4 <$                  | H <sub>2</sub> O                  | (d) $H_2O < NH_3 < NF$        | CH <sub>4</sub>                       |  |  |
| (96)  | The correct order of the                    | e O – O bond length in            | $O_2$ , $H_2O_2$ and $O_3$ is |                                       |  |  |
|       | (a) $O_2 > O_3 > H_2O_2$                    |                                   |                               | >                                     |  |  |
|       | (c) $H_2O_2 > O_3 > O_2$                    | (d) $O_2 > H_2 O_2 > O_3$         |                               |                                       |  |  |
| (97)  | The bond order of $O_2^-$                   | is                                |                               |                                       |  |  |
|       | (a) 1.0                                     | (b) 1.5                           | (c) 2.5                       | (d) 0.5                               |  |  |
| (98)  | Choose the incorrect st                     | tatement.                         |                               |                                       |  |  |
|       | (a) $\sigma$ bond is weaker the             | nan π bond                        |                               |                                       |  |  |
|       | (b) $\pi$ bond is weaker than $\sigma$ bond |                                   |                               |                                       |  |  |
|       | (c) $\pi$ bond is present a                 | along with a $\sigma$ bond        |                               |                                       |  |  |
|       | (d) $\sigma$ bond can be pres               | ent alone                         |                               |                                       |  |  |
| (99)  | Which of the following                      | is not paramagnetic?              |                               |                                       |  |  |
|       | (a) NO                                      | (b) S <sup>2-</sup>               | (c) O <sub>2</sub>            | (d) $N_2^-$                           |  |  |
| (100) | Which one of the follow                     | wing compound has sp <sup>2</sup> | hybridization?                |                                       |  |  |
|       | (a) CO <sub>2</sub>                         | (b) SO <sub>2</sub>               | (c) CO                        | (d) $N_2O$                            |  |  |
|       |                                             |                                   |                               |                                       |  |  |

## **Answer key**

| 1 d  | 2 c  | 3 c  | 4 b   | 5 c  | 6 b              |
|------|------|------|-------|------|------------------|
| 7 d  | 8 b  | 9 c  | 10 c  | 11 c | 12 a             |
| 13 c | 14 d | 15 b | 16 a  | 17 c | 18 a             |
| 19 d | 20 b | 21 d | 22 b  | 23 b | 24 c             |
| 25 b | 26 b | 27 c | 28 b  | 29 b | 30 b             |
| 31 b | 32 a | 33 c | 34 c  | 35 b | 36 c             |
| 37 b | 38 b | 39 a | 40 b  | 41 c | 42 d             |
| 43 c | 44 d | 45 c | 46 a  | 47 b | 48 d             |
| 49 d | 50 c | 51 d | 52 b  | 53 d | 54 b             |
| 55 d | 56 c | 57 b | 58 d  | 59 c | 60 a             |
| 61 b | 62 d | 63 d | 64 c  | 65 a | 66 b             |
| 67 b | 68 a | 69 b | 70 d  | 71 c | 72 b             |
| 73 a | 74 b | 75 a | 76 a  | 77 c | 78 d             |
| 79 c | 80 a | 81 c | 82 d  | 83 c | <b>&gt;</b> 84 b |
| 85 c | 86 a | 87 a | 88 b  | 89 c | 90 d             |
| 91 c | 92 b | 93 a | 94 d  | 95 a | 96 c             |
| 97 d | 98.a | 99 b | 100 b | 1    |                  |


## **Hints**

- 1. Electronegative difference in KI is more
- 2. ACC to V.B.T, O<sub>2</sub> contain all e<sup>-</sup> paired. So they are diamagnetic
- 6. Here C C contain double and triple bond
- 7.  $NO_3^-$  and  $CO_3^{-2}$  contains 32 e<sup>-</sup> so they are iso electric ions Both possess sp<sup>2</sup> hybridization
- 10. In  $H_2O_2$ , O H is polar

O - O is non-polar

- 11. H-O-N = 0
- 16. Struchure A is stable
- 18. In NF<sub>3</sub>, polarity of N F bond and non-bonding e<sup>-</sup> pair are in opposite direction
- 19. In CH<sub>3</sub>Cl, dipole moment is due to C-Cl and C-H

trans - pent - 2 - ene possess magnetic moment



- 30. In H<sub>2</sub>O, O Contain two lone pair of e<sup>-</sup> H Contain positive change
- 40. Bond order  $O_2^+ = 2.5$   $O_2 = 2$   $O_2^- = 1.5$   $O_2^{-2} = 1$
- 42. In H<sub>2</sub>O, O contain two lone pair of e<sup>-</sup> so repulsion is more

46. 
$$\Delta_f H^o = \Delta_{sub} H^o + \Delta_D H^o + \Delta_i H^o + \Delta_{eg} H^o + \Delta_u H^o$$

61. Theorectical dipole momentum

$$\begin{aligned} &H = q \times d & \left[ 1 \ D = 1 \times 10^{-18} \, \text{esa cm} \right] \\ &= 4.8 \times 10^{-10} \times 1.275 \times 10^{-8} \\ &= 6.12 \times 10^{-10} \, \text{e.s.u.cm} \\ &= 6.12 \, D \end{aligned}$$

% of ionic character = 
$$\frac{\text{Practical}(\mu)}{\text{Theoretical}(\mu)}$$
$$= \frac{1.03}{6.12} \times 100$$
$$= 16.83$$
$$\approx 17\%$$